Numerical Simulation of Polymer Film Stretching

نویسندگان

  • Hogenrich Damanik
  • Abderrahim Ouazzi
  • Stefan Turek
چکیده

We present numerical simulations of a film stretching process between two rolls of different temperature and rotational velocity. Film stretching is part of the industrial production of sheet of plastics which takes place after the extrusion process. The goal of the stretching of the sheet material is to rearrange the orientation of the polymer chains. Thus, the final products have more smooth surfaces and homogeneous properties. In numerical simulation, the plastic sheet is being modelled geometrically as a membrane and rheologically as a polymer melt. The thickness of the membrane is not assumed to be constant but rather depends on the rheology of the polymer and heat transfer. The rheology of the sheet material is governed by a viscoelastic fluid and is coupled to the flow model. An A-stable time integrator is applied to the systems in which the continuous spatial system is discretized within the FEM framework at each time step. The resulting discrete systems are solved via Newton-multigrid techniques. Here, a level set method is used to capture the free surfaces. We obtain similar results for test configurations with available results from literature and present ”neck-in” as well as ”dog-bone” effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Giant, voltage-actuated deformation of a dielectric elastomer under dead load

Related Articles A new numerical approach to dense polymer brushes and surface instabilities J. Chem. Phys. 136, 044903 (2012) Modifying thermal transport in electrically conducting polymers: Effects of stretching and combining polymer chains J. Chem. Phys. 136, 044901 (2012) Note: Percolation in two-dimensional flexible chains systems J. Chem. Phys. 136, 046101 (2012) Microstructure, transport...

متن کامل

Numerical Simulation of MHD Boundary ‎Layer Stagnation Flow of Nanofluid over a ‎Stretching Sheet with Slip and Convective ‎Boundary Conditions

   An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...

متن کامل

Stretching of polymers in a turbulent environment

The interaction of polymers with small-scale velocity gradients can trigger a coil-stretch transition in the polymers. We analyze this transition within a direct numerical simulation of shear turbulence with an Oldroyd-B model for the polymer. In the coiled state the lengths of polymers are distributed algebraically with an exponent α = 2γ − 1/De, where γ is a characteristic stretching rate of ...

متن کامل

Numerical Simulation Of the Componend Angles Effects On Adiabatic Film Cooling Effectiveness

Abstract Film Cooling Adiabatic Effectiveness on a Profile of a Gas Turbine blade that Using Holes with 45 Degree Combined Angles to the Flow Direction and Radial Along the Attack Edge as well as 25 Degree Angles to the Flow Direction and Surface Area of the Attack Edge Area and 35 degrees relative to the outlet hole suefaces along stagnation line, Under a specified blowing ratios, using the Re...

متن کامل

Numerical Simulation of unsteady MHD Flow and Heat Transfer of a Second Grade Fluid with Viscous Dissipation and Joule Heating using Meshfree Approach

In the present study, a numerical analysis is carried out to investigate unsteady MHD (magneto-hydrodynamic) flow and heat transfer of a non-Newtonian second grade viscoelastic fluid over an oscillatory stretching sheet. The flow is induced due to an infinite elastic sheet which is stretched oscillatory (back and forth) in its own plane. Effect of viscous dissipation and joule heating are taken...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013